Comprehensive gravity and magnetic data analysis for quantitative determining salt bodies in complex physical-geological environments
Eppelbaum L.V.1,2
1 Dept. of
Geophysics, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel Ramat Aviv 6997801, Tel Aviv, Israel
2 Azerbaijan State Oil and Industry University, Azerbaijan 20 Azadlig Ave., Baku, AZ1010: levap@tauex.tau.ac.il
DOI: 10.35714/ggistrat20240100007
Summary. It is well known that salt bodies in the subsurface are usually unfavorable targets for applying gravity and magnetic methods. It is caused mainly by minor differences in density (salt layers with a density of 2100-2200 kg/m3 often occur in sediments with a similar density) and magnetic (salt layers with a magnetization of about -10 mA/m frequently occur in low-magnetic media) properties as well as geological-petrophysical variability of the subsurface geological section. Therefore, for gravity-magnetic data processing and interpretation, many advanced procedures from the available methodological arsenal should be applied, beginning with removing different kinds of noise and target visual localization and ending with developing 3D physical-geological models. Although quantitative analysis of gravity-magnetic anomalies from salt objects, usually in thin horizontal plates, is a complicated problem, an interpretation methodology for carefully analyzing observed potential field anomalies has been developed (Eppelbaum, 2019). Integrating gravity and magnetic data between themselves and with other geophysical methods increases the reliability and accuracy of geological-geophysical interpretation. For combined 3D gravity-magnetic modeling, the developed GSFC software is applied, where 3D horizontal polygonal prisms approximate the geological bodies. The application of some qualitative and quantitative interpretation methods is shown in the model and field examples. Besides the land survey, it is proposed to apply a remote-operated vehicle magnetic survey at low altitudes, which will allow not only the delineation of the salt target’s disposition but also to monitor the appearance of new karst terranes, which are often associated with salt objects.
Keywords: salt bodies, gravity, magnetics, quantitative analysis, integrated
examination
REFERENCES
Alizadeh A.A., Guliyev I.S., Kadirov F.A., Eppelbaum L.V. Geosciences in Azerbaijan. Vol. II. Economic minerals and applied geophysics. Springer. Heidelberg – N.Y., 2017, 340 p., DOI: 10.1007/978-3-319-40493-6.
Alperovich L., Eppelbaum L., Zheludev V., Dumoulin J., Soldovieri F., Proto M., Bavusi M. and Loperte A. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Jour. of Geophysics and Engineering, Vol. 10, No. 2, 025017, 2013, pp.1-17, DOI: 10.1088/1742-2132/10/2/025017.
Al-Zoubi A., Eppelbaum L., Abueladas A., Ezersky M., Akkawi E. Methods for removing regional trends in microgravity under complex environments: testing on 3D model examples and investigation in the Dead Sea coast. International Jour. of Geophysics, Vol. 2013, Article ID 341797, 2013, pp. 1-13, DOI: 10.1155/2013/ 341797.
Averbuch A.Z., Neittaanmaki P., Zheludev V.A. Spline and spline wavelet methods with applications to signal and image processing: Volume I: Periodic splines. Springer Netherlands, 2014, 496 p., DOI: 10.1007/978-94-017-8926-4.
Bashirov A.E., Eppelbaum L.V., Mishne L.R. Improving Eötvös corrections by wide-band noise Kalman filtering. Geophysical Journal International, Vol. 108, No. 1, 1992, pp. 193-197.
Borda M. Fundamentals in information theory and coding. Springer, Berlin-Heidelberg, 2011, 504 p., DOI: 10.1007/978-3-642-20347-3.
Brooke C., Clutterbuck B. Mapping heterogeneous buried archaeological features using multisensor data from unmanned aerial vehicles. Remote Sensing, Vol. 12(1), 41, 2020, pp. 1-31, DOI: 10.3390/rs12010041.
Eppelbaum L.V. Remote operated vehicle geophysical survey using magnetic and VLF methods: proposed schemes for data processing and interpretation. Proceed. of the 2008 SAGEEP Conference, Philadelphia, USA, Vol. 21, 2008, pp. 938-963, DOI: 10.4133/ 1.2963338.
Eppelbaum L.V. An advanced methodology for Remote Operation Vehicle magnetic survey to delineate buried targets. Trans. of the 20th General Meeting of the Intern. Mineralogical Association, CH30G: Archaeometry (general session): Composition, technology, and provenance of archaeological artifacts, Budapest, Hungary, 2010, p. 103.
Eppelbaum L.V. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, Vol. 36, No. 16, 2011a, pp. 1318-1330, DOI: 10.1016/j.pce.2011.02.00.
Eppelbaum L.V. Interpretation of magnetic anomalies due to archaeological and environmental targets classified as “quasi thick bed bodies” in complex physical-geological environments. Proceed. of the 2013 SAGEEP Conference, Denver, Colorado, USA, Vol. 26, No. 1, 2013, pp. 415-424, DOI: 10.4133/sageep2013-144.1.
Eppelbaum L.V. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, Vol. 21, No. 2, 2014a, pp. 25-38, DOI: 10.1002/arp.1468.
Eppelbaum L.V. Four color theorem and applied geophysics. Applied Mathematics, Vol. 5, 2014b, pp. 358-366, DOI: 10.4236/am.2014.54062.
Eppelbaum L.V. Review of environmental and geological microgravity applications and feasibility of their implementation at archaeological sites in Israel. International Jour. of Geophysics, Article ID 927080, 2011b, pp. 1-9, DOI: 10.1155/2011/927080.
Eppelbaum L.V. Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate, and intermediate models under complex physical-geological environments in archaeological prospection. Archaeological Prospecting, Vol. 23, No. 2, 2015a, pp. 255-268, DOI: 10.1002/arp.1511.
Eppelbaum L.V. Quantitative interpretation of magnetic anomalies from bodies approximated by thick bed models in complex environments. Environmental Earth Sciences, Vol. 74, No. 7, 2015b, pp. 5971-5988, DOI: 10.1007/s12665-015-4622-1.
Eppelbaum L.V. Geophysical potential fields: geological and environmental applications. Elsevier. Amsterdam – N.Y., 2019, 467 p., DOI: 10.1088/978-0-7503-3635-2.
Eppelbaum L.V. Theories of probability, information, and graphs in applied geophysics. In: Prime archives in applied mathematics (K. Kyamakya, ed.), Vide Leaf. 2020, pp. 1-35, DOI: 10.37247/PAAM.1.2020.18.
Eppelbaum L.V., Alperovich L., Zheludev V., Pechersky A. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, Vol. 24, 2011, pp. 24-60, DOI: 10.3997/2214-4609-pdb.247.201.
Eppelbaum L.V., Ezersky M.G., Al-Zoubi A.S., Goldshmidt V.I., Legchenko A. Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3D modeling. Advances in GeoSciences, Vol. 19, 2008, pp. 97-115, DOI: 10.5194/adgeo-19-97-2008.
Eppelbaum L.V., Katz Y.I. Key features of seismo-neotectonic pattern of the Eastern Mediterranean. Proceedings of Azerb. Nation. Acad. Sci., the Sciences of Earth, No. 3, 2012, pp. 29-40.
Eppelbaum L.V., Khesin B.E. Geophysical studies in the Caucasus. Springer. Berlin - Heidelberg, 2012, 404 p., DOI: 10.1007/978-3-540-76619-3.
Eppelbaum L.V., Khesin B.E., Itkis S.E. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, Vol. 8, No. 3, 2001, pp.163-185, DOI: 10.1002/arp.167.
Eppelbaum L.V., Mishne A.R. Unmanned airborne magnetic and VLF investigations: effective geophysical methodology of the near future. Positioning, Vol. 2, No. 3, 2011, pp. 112-133, DOI: 10.4236/pos.2011.23012.
Eppelbaum L.V., Zheludev V., Averbuch A. Diffusion maps as a powerful tool for integrated geophysical field analysis to detect hidden karst terranes. Proceedings of Azerb. Nation. Acad. Sci., the Sciences of Earth, No. 1-2, 2014, pp. 36-46.
Ezersky M., Eppelbaum L., Al-Zoubi A., Keydar S., Medvidiev B., Akkawi E., Abueladas A.-R., Al-Ruzouq R. Geophysical prediction and following development sinkholes in two Dead Sea areas, Israel and Jordan. Environmental Earth Sciences, Vol. 70, 2013, pp. 1463-1478, DOI: 10.1007/s12665-013-2233-2.
Ezersky M., Eppelbaum L.V., Legchenko A. Applied geophysics for karst and sinkhole investigations: the Dead Sea and other regions. IOP (Institute of Physics Publishing). Bristol, UK, 2023, 639 p., DOI: 10.1088/978-0-7503-3635-2.
Ezersky M., Legchenko A., Camerlynck C., Al-Zoubi A., Eppelbaum L., Keydar S. The Dead Sea sinkhole hazards – new findings based on the multidisciplinary geophysical study. Zeitschrift für Geomorphologie, Supplementary Issues, Vol. 54, Supplementary Issue 2, 2010, pp. 69-90, DOI: 10.1127/0372-8854/2010/0054S2-0005.
Gadirov V., Eppelbaum L.V. Density-thermal dependence of sedimentary associations calls to reinterpreting detailed gravity surveys. Annales Geophysicae, Vol. 58, No. 1, 2015, pp. 1-6, DOI: 10.4401/ag-6672.
Ivashov S., Bugaev A., Razevig V. The simplest assessment of the possibility of using microgravimeters to search for unknown voids inside the Khufu Pyramid. Research Square, 2023, pp. 1-10, DOI: 10.21203/ rs.3.rs-2731210/v1.
Kaufmann G. Geophysical mapping of solution and collapse sinkholes. Jour. of Applied Geophysics, Vol. 111, 2014, pp. 271-288, DOI: 10.1016/j.jappgeo.2014.10.011.
Khesin B.E., Alexeyev V.V., Eppelbaum L.V. Interpretation of geophysical fields in complicated environments. Ser.: Modern Approaches in Geophysics (MAGE, Vol. 14). Kluwer Acad. Publ. (Springer). Boston–Dordrecht–London, 1996, 368 p., DOI:10.1007/978-94-015-8613-9.
Kolster M.E., Wigh M.D., da Silva E.L.S., Vilhelmsen T.B., Døssing A., High-speed magnetic surveying for unexploded ordnance using UAV systems. Remote Sensing, Vol. 14, No. 5, 2022, 1134, pp. 1-27, DOI: 10.3390/ rs14051134.
Paoletti V., Milano M., Baniamerian J., Fedi M. Magnetic field imaging of salt structures at Nordkapp Basin, Barents Sea. Geophysical Research Letters, Vol. 47, No. 18, 2020, pp. 1-12, DOI: 10.1029/2020gl089026.
Rowe J.D., Prieto C. Aeromagnetic data helps define salt structure variations in the Gulf of Mexico. Offshore, 01.01.2002.
Rybakov M., Rotstein Y., Shirman B., Al-Zoubi A. Cave detection near the Dead Sea – A micromagnetic feasibility study. The Leading Edge, June 2005, pp. 585-590, DOI: 10.1190/1.1946210.
Sharma P.V. Environmental and engineering geophysics. Cambridge Univ. Press. Cambridge, 1997, 475 p., DOI: 10.1017/CBO9781139171168.
Silva Dias F.J.S., Barbosa F.C.F., Silva J.B.C. Adaptive learning 3D gravity inversion for salt-body imaging. Geophysics, 76, No. 3, 2011, pp. 149-157, DOI: 10.1190/ 1.3555078.
Telford W.M., Geldart L.P., Sheriff R.E. Applied geophysics. Cambridge Univ. Press. Cambridge, 1990, 792 p., DOI: 10.1017/CBO9781139167932.
Wei X., Sun J., Sen M.K. Quantifying uncertainty of salt body shapes recovered from gravity data using trans-dimensional Markov chain Monte Carlo sampling. Geophysical Jour. International, Vol. 232, No. 3, 2023, pp. 1957-1978, DOI: 10.1093/gji/ggac430.